S(2)	-0.05930 (5)	0.11870 (8)	0.09050 (5)	3.14 (3)
O(1)	0.1088 (1)	0.5576 (2)	0.1334 (1)	3.7 (1)
O(2)	-0.1284 (1)	-0.1172 (2)	0.0877 (1)	4.3 (1)
N(1)	-0.0036 (1)	0.4579 (2)	0.1391 (2)	2.9(1)
N(2)	-0.0985 (1)	-0.0124 (2)	0.2216 (2)	2.9 (1)
C(1)	-0.0448 (3)	0.5732 (4)	0.0911 (3)	4.1 (2)
C(2)	0.0720 (2)	0.4571 (3)	0.1605 (2)	2.8 (1)
C(3)	0.1926 (2)	0.5561 (4)	0.1448 (3)	4.0 (2)
C(4)	0.2091 (3)	0.6628 (4)	0.0880 (3)	4.3 (2)
C(5)	-0.1254 (3)	-0.1309 (4)	0.2577 (3)	4.2 (2)
C(6)	-0.0987 (2)	-0.0118 (3)	0.1384 (2)	2.9 (1)
C(7)	-0.1334 (3)	-0.1248 (4)	-0.0075 (2)	4.4 (2)
C(8)	-0.2107 (3)	-0.0794 (6)	-0.0631 (3)	6.8 (3)

Table 2. Selected geometric parameters (Å, °)

Starred atoms are related to the corresponding unstarred atoms by a twofold axis.

Cu(1)—Cu(1*)	2.8270 (7)	S(2)—C(6)	1.761 (3)			
Cu(1)-Cu(2)	2.5974 (5)	N(1)C(1)	1.468 (4)			
Cu(1)-Cu(2*)	2.6344 (5)	N(1)—C(2)	1.282 (3)			
Cu(1)—S(1*)	2.2953 (8)	N(2)—C(5)	1.467 (4)			
Cu(1)—S(2)	2.2706 (9)	N(2)C(6)	1.283 (3)			
Cu(1)-N(1)	1.982 (2)	O(1)C(2)	1.344 (3)			
Cu(2)Cu(2*)	2.8628 (7)	O(1)—C(3)	1.444 (4)			
Cu(2)—S(1*)	2.2680 (9)	O(2)—C(6)	1.345 (3)			
Cu(2)—S(2*)	2.2974 (9)	O(2)—C(7)	1.450 (4)			
Cu(2)—N(2)	1.983 (2)	C(3)—C(4)	1.479 (5)			
S(1)—C(2)	1.766 (3)	C(7)—C(8)	1.467 (6)			
N(1)-Cu(1)-S(2)	116.44 (7)	O(1) - C(2) - S(1)	119.0 (2)			
$N(1)-Cu(1)-S(1^*)$	119.33 (7)	C(2) = O(1) = C(3)	121.8 (2)			
$S(2) - Cu(1) - S(1^*)$	124.22 (3)	Cu(2)Cu(1)Cu(2*)	66.34 (2			
N(2)-Cu(2)-S(1*)	119.19 (7)	Cu(2)—Cu(1)—Cu(1*)	57.93 (1			
N(2)Cu(2)S(2*)	117.23 (7)	$Cu(2) - Cu(1^*) - Cu(1)$	56.66 (1)			
S(1*)-Cu(2)-S(2*)	123.57 (3)	Cu(1)-Cu(2)-Cu(1*)	65.41 (2)			
C(2) = N(1) = C(1)	117.8 (3)	Cu(1)Cu(2)Cu(2*)	57.45 (1			
C(1) - N(1) - Cu(1)	121.6 (2)	Cu(1)—Cu(2*)—Cu(2)	56.21 (1			
C(2) - N(1) - Cu(1)	120.6 (2)	$Cu(1^*) - S(1) - Cu(2^*)$	69.39 (3			
N(1) - C(2) - O(1)	118.5 (3)	Cu(1)—S(2)—Cu(2*)	70.44 (3			
N(1)-C(2)-S(1)	122.5 (2)					
Cu(2)—Cu(1))—Cu(1*)—Cu	(2*) 81.11	*) 81.11 (2)			
Cu(1)—Cu(1	*)—Cu(2)—Cu	(2*) 66.00	*) 66.06 (2)			
Cu(1)—Cu(2))—Cu(2*)—Cu	*) 80.40 (2)				
Cu(2)—Cu(1))—Cu(2*)—Cu	(1*) 64.31	*) 64.31 (2)			
Cu(1)N(1)-	C(2)O(1)	175.2 (2)				
S(1)—C(2)—	-N(1)—C(1)	175.0 (3)				
Cu(1)-N(1)	-C(2)-S(1)	-6.0 (3)				
Cu(2)—N(2)	-C(6)-O(2)	178.4	-178.4 (2)			
S(2)—C(6)—	-N(2)—C(5)	-173.9 (3)				
Cu(2)—N(2)-	-C(6)-S(2)	3.4	(3)			

The unit cell was found to be C-centred monoclinic. Based on the systematic absences (hkl, h + k = 2n; h0l, l = 2n), packing considerations, a statistical analysis of intensity distribution and the successful solution and refinement of the structure, the space group was determined to be C2/c. The structure was solved by direct methods (Gilmore, 1990) and expanded using Fourier techniques (Beurskens *et al.*, 1992).

This work was supported in part by Grant-in-Aid for Science Research Nos 04225102 and 04453049 from the Ministry of Education, Science and Culture of Japan.

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: OH1057). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

© 1994 International Union of Crystallography Printed in Great Britain – all rights reserved

References

- Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). *The DIRDIF Program System*. Technical Report. Crystallography Laboratory, Univ. of Nijmegen, The Netherlands.
- Cotton, F. A., Feng, X., Matusz, M. & Poli, R. (1988). J. Am. Chem. Soc. 110, 7077-7083.
- Gilmore, C. J. (1990). MITHRIL. An Integrated Direct Methods Computer Program. Univ. of Glasgow, Scotland.
- Griffith, E. H., Hunt, G. W. & Amma, E. L. (1976). J. Chem. Soc. Chem. Commun. pp. 432–433.
- Karlin, K. D., Gultneh, Y., Hutchinson, J. P. & Zubieta, J. (1982). J. Am. Chem. Soc. 104, 5240–5242.
- Kitagawa, S., Munakata, M., Shimono, H., Matsuyama, S. & Masuda, H. (1990). J. Chem. Soc. Dalton Trans. pp. 2105–2109.
- Kitagawa, S., Kawata, S., Nozaka, Y. & Munakata, M. (1993). J. Chem. Soc. Dalton Trans. pp. 1399-1404.
- Lawton, S. L., Rohrbaugh, W. J. & Kokotailo, G. T. (1972). Inorg. Chem. 11, 612–618.
- Merz, K. M. Jr & Hoffmann, R. (1988). Inorg. Chem. 27, 2120-2127.
- Narasimhamurthy, N., Samuelson, A. G. & Manohar, H. (1989). J. Chem. Soc. Chem. Commun. pp. 1803-1804.

Acta Cryst. (1994). C50, 1028–1031

$[{PtCl(dmso)}_2(\mu-OH)_2]$

ZIVADIN BUGARCIC, KARIN LÖVQVIST AND ÅKE OSKARSSON*

Inorganic Chemistry 1, Chemical Center, University of Lund, PO Box 124, S-221 00 Lund, Sweden

(Received 5 July 1993; accepted 28 October 1993)

Abstract

The crystal structure of di- μ -hydroxo-bis[chloro-(dimethyl sulfoxide)platinum(II)], [Pt₂Cl₂(μ -OH)₂-(C₂H₆OS)₂], has been determined from X-ray intensity data. The compound contains a hydroxobridged dinuclear *cis* complex, *i.e.* the Cl atoms are in *cis* positions in [Cl(dmso)Pt(OH)₂Pt(dmso)Cl]. Each Pt atom has pseudo square-planar coordination composed of one dmso molecule, one Cl atom and two hydroxo groups. The complexes are linked by a hydrogen-bond network parallel to the *ab* plane.

Comment

The title compound (I) was obtained in an attempt to synthesize $[PtCl_2(dmso)(H_2O)]$ in aqueous solution by abstracting one Cl^- in K[PtCl_3(dmso)] by AgF in the following way: 0.03 g AgF in 5 ml water was

added to 0.17 g K[PtCl₃(dmso)] in 15 ml water (molar ratio 1:1); the solution was stirred for 5 h and precipitated AgCl was filtered off. The beaker was covered by parafilm and after a few weeks crystals were obtained. Suggested reactions are:

$$[PtCl_3(dmso)]^- + H_2O + Ag^+ \rightarrow$$
$$[PtCl_2(dmso)(H_2O)] + AgCl(s)$$

 $2[PtCl_2(dmso)(H_2O)] + 2F^- \rightarrow$

 $[{PtCl(dmso)}_{2}(\mu-OH)_{2}] + 2HF + 2Cl^{-1}$

The synthesis was carried out with both AgF and AgNO₃, but only AgF gave crystals of the title compound. In order to exclude the possibility of the presence of an F atom in the compound it was dissolved in dimethylformamide for an ¹⁹F NMR experiment. A scan was made between -325 and 565 p.p.m. with respect to CFCl₃, which was used as a reference for the ¹⁹F signal. No¹⁹F peak was found in this interval. The title compound may also be synthesized by treating an aqueous solution of K[Pt(dmso)Cl₃] with diethylamine or triethylamine (Kukushkin, Pakhomova & Kalyukokova, 1974). Both F^- and amines are weak bases and thus promote the formation of hydroxo species in solution, i.e. a hydroxo-bridged complex.

The compound is composed of neutral hydroxobridged dinuclear complexes, $[{PtCl(dmso)}_{2}(\mu OH_{2}$, with the Cl atoms in *cis* positions (Fig. 1).

Fig. 1. Atomic numbering of $[{PtCl(dmso)}_2(\mu-OH)_2]$.

Fig. 2. Stereoscopic view of the crystal packing of [{PtCl(dmso)}₂(μ -OH)₂].

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j$$

	x	у	z	U_{ea}
Pt(1)	0.39283 (6)	0.14494 (5)	0.03570 (3)	0.0216 (2)
Pt(2)	0.35819 (6)	0.00699 (5)	-0.09738 (3)	0.0238 (2)
O(1)	0.4731 (10)	0.1228 (8)	-0.0598 (6)	0.026 (4)
O(2)	0.3357 (10)	-0.0123 (8)	0.0103 (5)	0.024 (4)
Cl(1)	0.2961 (5)	0.1543 (4)	0.1402 (2)	0.040 (2)
Cl(2)	0.2148 (4)	-0.1165 (4)	-0.1278 (3)	0.035 (2)
S(1)	0.4607 (4)	0.3118 (3)	0.0490 (2)	0.025 (1)
S(2)	0.4019 (4)	0.0429 (4)	-0.2065 (2)	0.033 (2)
O(11)	0.3760 (11)	0.4002 (9)	0.0581 (7)	0.039 (5)
C(11)	0.5522 (20)	0.3405 (15)	-0.0226 (9)	0.041 (7)
C(12)	0.5556 (17)	0.3217 (14)	0.1207 (10)	0.036 (7)
O(21)	0.4974 (14)	0.1243 (12)	-0.2165 (8)	0.058 (6)
C(21)	0.4403 (18)	-0.0808 (16)	-0.2530 (10)	0.043 (7)
C(22)	0.2785 (18)	0.0928 (16)	-0.2527 (10)	0.045 (8)

Table 2. Selected geometric parameters (Å, °)

Pt(1)-O(1)	2.049 (11)	Pt(2)O(1)	2.050 (11)
Pt(1)-O(2)	2.065 (10)	Pt(2)-O(2)	2.072 (10)
Pt(1) - S(1)	2.174 (4)	Pt(2) - S(2)	2.174 (4)
Pt(1)Cl(1)	2.274 (5)	Pt(2)-Cl(2)	2.295 (5)
S(1)—O(11)	1.45(1)	S(2)-O(21)	1.47 (1)
S(1)-C(11)	1.75 (2)	S(2) - C(21)	1.78 (2)
S(1)-C(12)	1.75 (2)	S(2)C(22)	1.77 (2)
$Pt(1) \cdot \cdot \cdot Pt(2)$	3.0496 (9)	$O(1) \cdots O(2)$	2.63 (2)
$Pt(1) \cdots Pt(2^{i})$	3.593 (1)	., .,	• •
Cl(1) - Pt(1) - S(1)	91.6 (2)	Cl(2) - Pt(2) - S(2)	93.2 (2)
S(1) - Pt(1) - O(1)	93.5 (3)	S(2) - Pt(2) - O(1)	92.7 (3)
O(1)—Pt(1)—O(2)	79.5 (4)	O(1)-Pt(2)-O(2)	79.3 (4)
O(2) - Pt(1) - Cl(1)	95.4 (3)	O(2) - Pt(1) - Cl(2)	94.9 (3)
Cl(1) - Pt(1) - O(1)	174.8 (3)	Cl(2) - Pt(1) - O(1)	172.8 (3)
S(1)—Pt—O(2)	172.9 (3)	S(2)—Pt—O(2)	171.9 (3)
Pt(1)—S(1)—O(11)	116.9 (5)	Pt(2)-S(2)-O(21)	115.1 (6)
Pt(1) = S(1) = C(11)	108.0 (6)	Pt(2)-S(2)-C(21)	111.1 (7)
Pt(1) - S(1) - C(12)	112.1 (6)	Pt(2)—S(2)—C(22)	110.7 (7)
O(11)—S(1)—C(11)	110.4 (9)	O(21)—S(2)—C(21)	107.9 (9)
O(11)—S(1)—C(12)	106.0 (8)	O(21)-S(2)-C(22)	107.6 (9)
C(11)—S(1)—C(12)	102 (1)	C(21)—S(2)—C(22)	103.7 (9)
Pt(1)—O(1)—Pt(2)	96.1 (5)	Pt(1) = O(2) = Pt(2)	95.0 (4)
Hydrogen bonds			
$O(1) \cdot \cdot \cdot O(2^i)$	2.735 (17)	O(2)· · ·O(11 ⁱⁱ)	2.801 (18)
$O(1^i) \cdots O(2) \cdots O(11^{ii})$	113.7 (5)		

Symmetry codes: (i) 1 - x, -y, -z; (ii) $\frac{1}{2} - x, y - \frac{1}{2}, z$.

Table 3. Comparison of structural data	(Å,	°) for some	hydroxo-bridged complexes
--	-----	-------------	---------------------------

	Symmetry	Pt…Pt	Pt-O	trans-partner		O-Pt-O	Pt-O-Pt	Reference
$(\mathbf{P}_{\mathbf{N}}\mathbf{H}_{\mathbf{N}})$ ($(\mathbf{P}_{\mathbf{N}}\mathbf{H}_{\mathbf{N}})$	ī	3 085 (1)	2.03 (1)	N	NH,	81.3 (4)	98.7 (4)	(a)
[[11(1113)232(µ=011)2](1103)2	•	5.005 (1)	2.03	N	NH.		.,	
$K ((P_0, N_0)) \} ((-0H) 1 ^{1} H_0$	1	3 167 (1)	2.02 (2)	N	NO ₁	81 (1)	99 (1)	(b)
K2[{1 ((1002)2)2((µ=011)2],121120	•	5.107 (1)	2.05 (2)	N	NO	(-)		
			2.06 (2)	N	NO ₂	80 (1)	99 (1)	
			2.04(2)	N	NO ₂		.,	
	ī	3 137 (3)	2.045 (5)	S	tmso	80.0 (2)	100.0 (3)	(c)
$[\{1, (C_4, 1, 8, 3, C)\}_{2/2}(\mu^{-1}, C)\}_{2/2}(1, C)]_{2/2}(1, C)]_$	•	5.157 (5)	2.050 (5)	ŝ	tmso			
(Internet) (u.OH). (CIO.).	ī	3 145 (3)	2.031 (9)	ŝ	dmso	79.6 (4)	100.4 (4)	(d)
	•	5.145 (5)	2.064 (8)	ŝ	dmso			
1/Pr/NH-)-)-(//-OH)-1(CO.)-2H-O	1	3.104 (1)	2.02 (1)	Ň	NH ₁	81.9 (5)	98.8 (5)	(e)
[[1 ((113)2)2(µ-011)2](003)2.21120	•	5.10 (1)	2.04 (1)	N	NH ₂		.,	
			2.06 (1)	N	NH	80.6 (5)	98.5 (5)	
			2.07 (1)	Ν	NH	.,		
[Pt(dmso).).(u=OH).](BF.).	ī	3.144 (1)	2.052 (14)	S	dmso	80.0 (6)	100.0 (6)	(f)
[[1:(((((((((((((((((((((((((((((((((((-		2.054 (13)	S	dmso	.,		
[/PtCl(dmso)].(u=OH).]	1	3 (1496 (9)	2.049 (11)	- C1		79.5 (4)	96.1 (5)	(g)
	•	510100 (5)	2.065 (10)	S	dmso		.,	0,
			2.050 (11)	Ċ		79.3 (4)	95.0 (4)	
			2.072 (10)	s	dmso			
(Pt(dmso)) (u=OH).)(CE-SO_)	ī	3 1417 (9)	2.063 (9)	ŝ	dmso	81.0 (4)	99.0 (4)	(f)
[11 ((uiiis0)2)2(µ-011)2](C1 3503)2	•	5	2.068 (9)	ŝ	dmso			(, ,
$NB_{\mu} = 1 (P(C, F_{\lambda}) \setminus (\mu, OH))$	ī	3 211 (1)	2 07 (2)	ē	C.F.	78.6 (5)	101.4 (6)	(<i>h</i>)
[14 Bu4]2[{r ((~6r 5/2)2(µ-011)2]	1	5.211 (1)	2.07 (2)	č	C.F.	(0)		()
$I(\mathbf{P}_{\mathbf{P}}(\mathbf{P}_{\mathbf{M}_{\mathbf{P}}})) (u, \mathbf{O}_{\mathbf{P}}) \mathbf{O}_{\mathbf{P}})$	ī	3 261 (1)	2.00(1)	P	PMe.	759 (4)	104.1 (4)	(1)
[{rt(rwe ₃) ₂ } ₂ (µ-OH) ₂](NO ₃) ₂	1	5.201 (1)	2.00 (1)	P	PMe.			(-)
(Pt/dant) (OH) (PE) 2CH CL 2H O	ī	3 227 (1)	2.00(1)	P	dnnf	79.4 (4)	100.6 (7)	(1)
[{r(uppi)}2(µ=011)2](b1-1)2.2C112C12.2112O	•	5.227 (1)	2.002 (11)	p	dppf			
	1	3 121 (1)	2.166 (13)	P	PFt.	79 4 (6)	92 (2)	(k)
[{rt(rEt ₃) ₂ } ₂ (µ=011) ₂](B14) ₂	•	5.121 (1)	2.007 (13)	, P	PEt.	(0)	(-)	¢-7
			2 167 (14)	, P	PEt.	79.3 (6)	96 (2)	
			2.101 (13)	P	PEt,		\-/	

References: (a) Faggiani, Lippert, Lock & Rosenberg (1977); (b) Min, Larsen, Emerson & Aboot (1990); (c) Rochon & Guay (1987); (d) Rochon, Kong & Melanson (1985); (e) Lippert, Lock, Rosenberg & Zvagulis (1978); (f) Ericson, Lövqvist, Norén & Oskarsson (1992); (g) this work; (h) López, Ruiz, Garciá, Vincente, Martí, Hermoso, Vegas & Martínez-Ripoll (1992); (i) Trovó, Bandoli, Casellato, Corain, Nicolini & Longato (1990); (j) Longato, Pilloni, Valle & Corain (1988); (k) Bushnell (1978).

The coordination geometry around each Pt atom is distorted square planar with one chlorine, one dmso bonded via the S atom, and two bridging-hydroxo groups. The least-squares planes were calculated with unit weights. The deviations from the two SCIPtO₂ planes are: Pt(1) 0.0131(6), S(1) - 0.012(4), Cl(1)0.006(5), O(1) 0.01(1), O(2) -0.01(1)Å; Pt(2) 0.0259(6), S(2) -0.082(5), Cl(2) 0.028(5), O(1) -0.11(1), O(2) 0.14(1) Å. The angle between the two SCIPtO₂ least-squares coordination planes (33°) is about the same as that observed in $[Pt_2(OH)_2 (PEt_3)_4](BF_4)_2$ [36° (Bushnell, 1978)]. Comparative structural data for the title compound and other $bis(\mu-hydroxo)$ platinum(II) complexes are reported in Table 3. Out of the 12 complexes, eight exhibit a center of symmetry, i.e. the four-membered ring PtO₂Pt is planar due to symmetry. The Pt…Pt distance in the title compound [3.050 (1) Å] is the shortest observed so far for this type of compound, but it is too long to be regarded as a metal-metal bond. The short Pt...Pt distance is a consequence of the large tilt angle between the two coordination planes, the small Pt-O-Pt angles and the fairly short Pt-O distances (Table 3). These distances are 2.05 (1) (trans Cl) and 2.07 (1) Å (trans dmso). The Pt-O bond trans to dmso is somewhat longer than the one trans to Cl; it could be argued that this is caused by a larger trans influence of the sulfoxide as compared to Cl, but the difference is hardly significant. However, as expected, it is shown in Table 3 that phosphines have a somewhat larger *trans* influence than Cl^- and ligands with S and N as donor atoms.

The Pt—S distances [2.174 (4) Å] are smaller than those (2.189–2.223 Å) found in hydroxo-bridged complexes with two dmso molecules coordinated to each Pt atom (Ericson, Lövqvist, Norén & Oskarsson, 1992; Rochon, Kong & Melanson 1985); this is probably due to a larger *cis* influence of S, compared to Cl, on the Pt—S bond length.

The dinuclear [{PtCl(dmso)}₂(μ -OH)₂] complexes are most probably hydrogen bonded into pairs by hydrogen bonds between the hydroxo groups [O(1)ⁱ...O(2) = 2.74 (2) Å (Table 2)]. These centrosymmetric pairs are further linked by hydrogen bonds between one of the hydroxo groups and an O atom in the dmso molecule [O(2)...O(11)ⁱⁱ = 2.80 (2) Å], forming layers parallel to the *ab* plane (Fig. 2). The presence of hydrogen bonds of this strength (~2.7-2.8 Å) is supported by an IR spectrum, which shows a broad intense peak at 3200 cm⁻¹ (Hamilton & Ibers, 1968).

Experimental

Crystal data

 $\begin{bmatrix} Pt_2Cl_2(OH)_2(C_2H_6OS)_2 \end{bmatrix} & Mo \ K\alpha \ radiation \\ M_r = 651.34 & \lambda = 0.7107 \ \text{\AA}$

Orthorhombic *Pbca* a = 11.487 (2) Å b = 12.067 (1) Å c = 18.967 (3) Å V = 2629.0 (5) Å³ Z = 8 $D_x = 3.29 \text{ Mg m}^{-3}$

Data collection

Enraf-Nonius CAD-4 diffractometer ω -2 θ scans Absorption correction: by integration from crystal shape $T_{min} = 0.098, T_{max} =$ 0.218 2571 measured reflections 2511 independent reflections

Refinement

Refinement on F R = 0.038 wR = 0.048 S = 1.09 1497 reflections 118 parameters H-atom parameters not refined w = $1/[\sigma^2(F)/4|F_o|^2$ $+ 0.03|F_o|^2 + 8.0]$ $(\Delta/\sigma)_{max} = 0.06$ Cell parameters from 25 reflections $\theta = 6.4-22.6^{\circ}$ $\mu = 22.19 \text{ mm}^{-1}$ Room temperature Prism $0.2 \times 0.18 \times 0.12 \text{ mm}$ Yellow

1497 observed reflections $[I > 2\sigma(I)]$ $R_{int} = 0.0082$ (based on standard reflections) $\theta_{max} = 28^{\circ}$ $h = 0 \rightarrow 14$ $k = 0 \rightarrow 14$ $l = 0 \rightarrow 23$ 2 standard reflections frequency: 120 min intensity variation: <2.5%

$$\begin{split} &\Delta \rho_{\text{max}} = 2.27 \text{ e } \text{\AA}^{-3} \\ &\Delta \rho_{\text{min}} = -1.89 \text{ e } \text{\AA}^{-3} \\ &\text{Extinction correction: Becker} \\ &\& \text{ Coppens (1975)} \\ &\text{Extinction coefficient:} \\ &0.1013 \times 10^5 \\ &\text{Atomic scattering factors} \\ &\text{from International Tables} \\ &\text{for X-ray Crystallography} \\ &(1974, \text{ Vol. IV}) \end{split}$$

The structure was solved by direct and difference Fourier methods and refined by full-matrix least-squares calculations employing programs amended by Lundgren (1982). The H atoms could not be located in the difference Fourier maps and they were not included in the structure-factor calculations.

Financial support from the Swedish Natural Science Research Council is gratefully acknowledged. We are much obliged to Dr Lars A. Bengtsson for help with the NMR experiment.

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71796 (27 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AB1105]

References

- Becker, P. J. & Coppens, P. (1975). Acta Cryst. A31, 417-425. Bushnell, G. W. (1978). Can. J. Chem. 56, 1773-1778.
- Ericson, V., Lövqvist, K., Norén, B. & Oskarsson, Å. (1992). Acta Chem. Scand. 46, 854-860.
- Faggiani, R., Lippert, B., Lock, C. J. L. & Rosenberg, B. (1977). J. Am. Chem. Soc. 99, 77-781.

Hamilton, W. C. & Ibers, J. A. (1968). Hydrogen Bonding in Solids, p. 87. New York: W. A. Benjamin.
Kukushkin, Y. N., Pakhomova, I. V. & Kalyukokva, E. N. (1974). Zhur. Obshch. Khim. 44, 13-16.

- Lippert, B., Lock, C. J. L., Rosenberg, B. & Zvagulis, M. (1978). Inorg. Chem. 17, 2971-2975.
- Longato, B., Pilloni, G., Valle, G. & Corain, B. (1988). Inorg. Chem. 27, 956-958.

López, G., Ruiz, J., García, G., Vincente, C., Martí, J. M., Hermoso, J. A., Vegas, A. & Martínez-Ripoll, M. (1992). J. Chem. Soc. Dalton Trans. pp. 53-58.

Lundgren, J. O. (1982). Crystallographic Computer Programs. Report No. UUIC-B13-4-05. Univ. of Uppsala, Sweden.

- Min, D., Larsen, R. D., Emersen, K. & Aboot, E. H., (1990). Inorg. Chem. 29, 73-76.
- Rochon, F. D. & Guay, F. (1987). Acta Cryst. C43, 43-46.
- Rochon, F. D., Kong, P. C. & Melanson, R. (1985). Acta Cryst. C41, 1602-1605.
- Trovó, G., Bandoli, G., Casellato, U., Corain, B., Nicolini, M. & Longato, B. (1990). *Inorg. Chem.* 29, 4616–4621.

Acta Cryst. (1994). C50, 1031-1034

Hexakis(*tert*-butylammonium) Heptamolybdate(VI)–Water (1/7)

Pascual Román,* Ana San José, Antonio Luque and Juan M. Gutiérrez-Zorrilla

Departamento de Química Inorgánica, Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain

(Received 14 June 1993; accepted 17 November 1993)

Abstract

The asymmetric unit of $[(CH_3)_3CNH_3]_6[Mo_7-O_{24}].7H_2O$ consists of a heptamolybdate anion, six *tert*-butylammonium cations and seven water molecules. The crystal packing is stabilized by electrostatic interactions and an extensive network of hydrogen contacts involving the O atoms from the polyanion, the water molecules and the N atoms, and some C atoms of the cations. Some of these hydrogen bonds may play an important role in the UV-induced photochromism of this compound.

Comment

This work was undertaken in order to obtain a deeper insight into the effect of the cation on the crystal packing, the strength of the intermolecular contacts and the chemical properties of organoammonium polyoxomolybdates. Several studies on polyoxometallates of V, Mo and W have been carried out in recent years because of their applications in photochemistry, catalysis and biomedicine